
Modern Virtual Machine Performance

● murphee (Werner Schuster)

● http://jroller.com/page/murphee



Overview

● Virtual Machine Myths  
– Myth: Java is interpreted 
– Myth: Native code is always faster than...
– Myth: Garbage Collection is slow/has overhead/...

● State of the art Dynamic Compilers
– Hotspot & Co
– Java (safety) restrictions and their solutions

● Runtime Code Generation/Specialization
– A bit of theory: Retargetable Compilers
– Examples: JSP, XSLT,...



Overview/2

● Garbage Collection
– Generational Garbage Collectors 
– No more pauses with concurrent collection

● Benchmarking 
– Know what you test
– Microbenchmarks and Dynamic Compilers
– Sample

● Misc Java Performance Tips
– Forget MicroTuning
– Watch your Strings



Myth: Java is interpreted

● JDK 1.0, JDK 1.1

● JITs after 1.1.6

● Interpretation in Hotspot for initial execution 
– execution is profiled and code is compiled if it's a 

Hotspot

● Interpretation on devices with restricted power

● Hardware 



Myth: Native is always faster 
than...

● Great. Java is compiled to native code at 
runtime. 
– simple JIT compilers get rid of interpretation 

dispatch overhead
– Dynamic Compilers produce highly optimized native 

code that is executed

● Native Code(x) != Native Code(y)
– Native Code (Optimized) != Native Code 

(NonOptimized) 



Dynamic Compilers

● Just In Time – Compilers
– Compiles method at first use – method stays in 

memory after that
– Have little time to work

● Dynamic Compilers 
– Profile code (method counters) 
– Compile only code that is used a lot
– Basic Idea: 

● Compiler can take more time to optimize code, thus yields 
better, faster code 



Optimizations/OOP

● Virtual Dispatch
– Virtual Inlining == Inlining of Virtual methods
– Inline Caches/Polymorphic Inline Caches

● reduce cost of virtual dispatch

● Technology
– Class Hierarchy Analysis
– Deoptimization 
– OSR - OnStackReplacement



Optimizations/ABC

● ArrayBoundsChecking Removal 
● In Java each foo[i] access must check

– i >= 0
– i < foo.length
– else: Exception

● Can be removed if index is known to be in the 
allowed range
– in loops 
– index a constant



Optimizations/Synchronization

● Synchronization Removal

● synchronized methods or synchronized
(x) blocks

● If the lock (ie. some object) is thread local
– No Contention (ie. no other threads can access it)
– Thus: locking useless and can be removed



Retargetable Compiler

Retargetable Compiler

Intermediate Representation
(eg. Bytecode)

x86 PPC ...

Java Jython ...



Languages for the JVM

● Jython, Jruby, Rhino (Ecmascript), ......

● More?
– http://www.robert-tolksdorf.de/vmlanguages.html

● JVM as platform
– Unix has C as system language

● syscalls have C semantics
● structures are represented as C structs

– Vast amount of code and libraries available



Runtime Code Generation and 
Specialization

● Specialized bytecode is generated and loaded 
at runtime 
– compiled by dynamic compiler and linked to 

existing code
– runs as optimized native code

● Existing Uses
– JSP
– XSLTC (Java 5.0+)
– Sun JFluid Profiler



Runtime Code Specialization

● Performance Advantages
– less branches from lookups or interpretation
– inlining easier

● VM and GC make this easy
– less risk for generated code damaging something

  

● Further Reading:
– http://citeseer.ist.psu.edu/massalin92synthesi.html
– http://www.cse.ogi.edu/DISC/projects/synthetix/overview.html



Myth: GC is always slow/has 
overhead/...

● Java 1.0: Simple StopTheWorld MarkSweep 
FreeList Allocator
– Overhead for allocation and deallocation
– Pauses (especially for large heaps) 

● Java 1.5: Too much to list...
– Generational GC makes allocation very cheap, 

deallocation free (for short lived objects)
– Incremental/Concurrent GC reduce pauses or 

eliminate them at all
– Compacting reduces fragmentation and improves 

locality 



Garbage Collection

Generational Garbage Collection

Eden/NurserySurvivorOld GenerationPerm

Classes,...

Objects get born
Allocation is cheap
Deallocation is free

Tip: Check out JConsole in Java 5.0



Concurrent GC/1

● Basic GC algorithm:
– new() requests come in, memory gets allocated
– Until: no memory left, which means 

● Stop The World = threads are stopped
● Mark & Collect Garbage

 
● Problem: “StopTheWorld” pauses

– are particularly bad for apps that must be 
responsive, eg GUI apps

– gets worse with larger heaps (longer collection 
times)



Concurrent GC/2

● Solution: Concurrent GC (sometimes called 
“Incremental”)

● Algorithm:
– Stop threads for a short time
– Mark Garbage
– Continue threads
– Stop threads for a short time
– Remark 
– Collect



Concurrent GC/3

● Benefit
– Pauses can be kept short so they cannot be noticed

● Cost
– concurrent GC does a little more work to avoid long 

pauses
– if pauses are irrelevant, GC can be tuned for 

throughput
– http://java.sun.com/docs/hotspot/gc5.0/ergo5.html
– http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html



Sample

Java Code: Parser + AST Builder, built with ANTLR

Equivalent code: handcrafted C/C++
(Note: don't do exactly the same, but can be compared)

Test Code

e = exprParser.parse(new FileInputStream(“foo.m”));

Java Version:  1300 ms

C/C++ Version: 200 ms 



Sample

Identified Problem

FileInputStream does not buffer, thus each read() causes a syscall.

Test Code

fis = new FileInputStream(“foo.m”);
e = exprParser.parse(new BufferedInputStream(fis));

Java Version:  950 ms

C/C++ Version: about 200 ms



Sample

Identified Problem

Test code was only run once, in a “cold” JVM (newly started JVM).

Test Code

for(int x = 0; i<10; i++){
fis = new FileInputStream(“foo.m”);
e = exprParser.parse(new BufferedInputStream(fis));
}

Java Version:  1st loop iteration: 950 ms, 
2nd loop iteration 250 ms (!) 

C/C++ Version: about 200 ms



 Performance Tips/Locals

● Micro-Optimizations: Just say no

String foo; 
while(something){
   foo = getMeSome Foo()
   // do something with foo
}

There's no difference. Period.
For sceptics:
http://www.javalobby.org/java/forums/m91823466.html
 (If you don't want to read all... read only my postings, 
they should explain the matter).

while(something){
   String foo = getMeSome Foo()
   // do something with foo
}



Performance Tips/Strings

● String objects are immutable
– Creation of a String means all its data is in memory
– At design time:

● Always think whether Strings are the best way to go
● If lots of data is needed/handled, check out 

CharSequence, CharBuffer, ... 

● “+” and “+=” for Strings 
– OK for low frequency concatenation
– Careful if used in loops

● Maybe using StringBuffer is better (depends on situation)  



Links

● Jikes RVM 
– http://jikesrvm.sourceforge.net/info/papers.shtml
– Lots of papers and research about Garbage Collection, JIT or Dynamic 

Compilers, Virtual Machines,...
● Sun Hotspot 

– http://java.sun.com/docs/performance/index.html
– All about Hotspot and Sun JVM performance

● Java Performance Tuning
– http://www.javaperformancetuning.com/
– By the writers of “Java Performance Tuning”, monthly newsletters with 

tips and links
● Anatomy of a flawed microbenchmark

– http://www-128.ibm.com/developerworks/java/library/j-jtp02225.html?ca=drs-j0805
– Benchmarking is hard...


